Муниципальное автономное учреждение дополнительного образования детей Детский оздоровительно-образовательный центр

Принята Педагогическим советом 10 января 2020 года

Дополнительная общеобразовательная общеразвивающая программа технической направленности «Беспилотный транспорт»

Возраст обучающихся: 12-18 лет Срок реализации: 1 год

Автор-составитель: Ронинград Станислав Викторович, педагог дополнительного образования

І. ЦЕЛЕВОЙ РАЗДЕЛ

Направленность программы: научно-техническая.

Актуальность программы: настоящая программа интегрирует в себе достижения современных и инновационных направлений в беспилотном транспорте (БТ). Занимаясь по данной программе, обучающиеся должны получить знания и умения, которые позволят им понять основы устройства беспилотников, принципы работы всех их систем, а также управления беспилотным транспортом.

Благодаря росту возможностей и повышению доступности дронов, потенциал использования их в разных сферах экономики стремительно растёт. Стратегическая задача курса состоит в подготовке специалистов по конструированию, программированию и эксплуатации БТ.

Отмичительные особенности программы: в программе объединены: начальное инженерное проектирование, программирование микроконтроллеров и микропроцессоров и отведена доля на спортивную деятельность радиоуправления моделями дронов, знакомство с актуальными и передовыми технологиями.

Адресат программы: программа ориентирована на дополнительное образование учащихся среднего и старшего школьного возраста (12-18 лет).

Цель программы: формирование у учеников устойчивых знаний и навыков по таким дисциплинам, как:

- аэродинамика (что актуально как для воздушных, так и для наземных дронов) и конструирование беспилотных аппаратов;
- основы радиоэлектроники и схемотехники;
- программирование микроконтроллеров;
- эксплуатация и управление БТ.

Программа направлена на развитие в ребенке интереса к проектной, конструкторской и предпринимательской деятельности, расширяющей кругозор и образованность ребенка.

Задачи программы:

- воспитание интереса к технике и технологиям;
- развитие воображения и пространственного мышления;
- воспитание трудолюбия, развитие трудовых умений и навыков;
- расширение политехнического кругозора, умения планировать работу для реализации замысла, предвидеть результат и достигать его, при необходимости вносить коррективы в первоначальный замысел;
- развитие умения планировать свои действия с учетом фактора времени в обстановке с элементами конкуренции;

- повышение сенсорной чувствительности, развитие мелкой моторики и синхронизации работы обеих рук за счёт обучения сборке и управлению беспилотными аппаратами;
- ознакомление детей с духом научно-технического соревнования;
- детей проектированию, сборке обучение И программированию беспилотных летательных аппаратов, использованию современных средств автоматического контроля И управления ДЛЯ создания интеллектуального БТ;
- самореализация личности обучающегося;
- развитие творческих способностей обучающегося.

Сроки реализации: объём учебной программы – 152 часов.

Планируемые результаты: образовательная программа дает каждому обучающемуся по результатам ее прохождения возможность овладения всеми заявленными компетенциями и выполнения проектной работы по созданию беспилотной авиационной системы. Формой отчетности является успешное выполнение всех практических задач, последующая защита собственного реализованного проекта.

ІІ. СОДЕРЖАТЕЛЬНЫЙ РАЗДЕЛ

В ходе реализации программы обучающиеся изучают устройство беспилотников, электротехнику, пайку и программирование микроконтроллеров и микропроцессоров. В ходе работы они получают опыт работы с инструментом, а также опыт в управлении беспилотной моделью.

Разделы	Темы	Теория	Практика	Всего
				час.
Блок 1	Теория мультироторных систем. Основы	5	22	27
	управления. Практика на симуляторах.			
Блок 2	Сборка и настройка беспилотников. Учебные	15	33	48
	полёты/поездки			
Блок 3	Настройка, установка FVP-оборудования.	7	30	37
	Полёты/поездки от первого лица.			
Блок 4	Программирование мультироторных	10	16	26
	беспилотников.			
Блок 5	Работа в группах над инженерным проектом.	2	8	10
	Итоговая аттестация	-	4	4
	Итого:	39	113	152

ІІІ. ОРГАНИЗАЦИОННЫЙ РАЗДЕЛ

1. Учебно-тематический план

	Наименование темы	Объём часов		
Раздел		Всего	В том числе	
		часов	Теория	Практика
1	2	3	4	5

Блок 1	Теория мультироторных систем. Основы	27	5	22
	управления. Практика на симуляторах.			
1	Вводная лекция о содержании курса.	1	1	-
2	Принципы управления и строение	4	1	3
	беспилотников.			
3	Основы техники безопасности.	1	1	_
4	Основы электричества. Литий-полимерные	1	1	-
	аккумуляторы.			
5	Практическое занятия с литий-	3	-	3
	полимерными аккумуляторами			
	(зарядка/разрядка/балансировка/хранение).			
6	Технология пайки. Техника безопасности	1	1	-
7	Обучение пайке.	7	-	7
8	Полёты на симуляторе.	9	-	9
Блок 2	Сборка и настройка беспилотников.	45	15	30
	Учебные полёты/поездки	-		
1	Знакомство с приборами управления и	3	2	1
1	управление беспилотником.	5	_	
2	Бесколлекторные двигатели и регуляторы	5	5	_
2	их хода. Серводвигатели и моторы. Платы	3	3	
	разводки питания.			
3	Сборка корпуса БТ.	4	_	4
1	2	3	4	5
4	Пайка ESC, BEC и силовой части.	5	4	5
5	'		5	
3	Основы настройки контроллеров с	6	3	1
	помощью компьютера. Настройка			
	аппаратуры управления		2	2
6	Настройки контроллера.	5	2	3
7	Инструктаж по технике безопасности.	1	1	-
8	Первые учебные полёты/поездки. Разбор	8	-	8
	аварийных ситуаций.			_
9	Сложные элементы учебных и	8	-	8
	практических полётов/поездок.			
Блок 3	Настройка, установка FPV- оборудования.	40	6	34
1	Основы видеотрансляции. Применяемое	9	2	7
	оборудование, его настройка.			
2	Установка и подключение	9	2	7
	радиоприёмника и видеооборудования			
3	Пилотирование с использованием FPV-	22	2	20
	оборудования			
Блок 4	Программирование мультироторных	26	10	16
	беспилотников.			
1	Основы микроэлектроники и	10	4	6
	программирования микроконтроллеров			
2	Практикум «Введение в	16	6	10
	программирование микроконтроллеров»			
Блок 5	Работа в группах над инженерным	10	2	8
	проектом.			
1	Принципы создания инженерной	2	2	-
1	проектной работы.	_	_	
2	Работа в группах над инженерным	6	_	6
~	проектом «Беспилотная авиационнная	5		
	система».			
3	Подготовка презентации собственной	2	_	2
	проектной работы.	~		
<u> </u>	irpoekinon paoorbi.			1

Итоговая аттестация				
1	Презентация и защита группой	4	-	4
	собственного проекта.			
	Итого:	152	38	114

Условия реализации программы

Материально – техническое обеспечение программы:

- учебный класс;
- компьютер преподавателя;
- ноутбуки (5 шт.);
- паяльное оборудование (5 шт.);
- программаторы для микроконтроллеров (2 шт.);
- наборы для сборки (Arduino (2 шт.);
- стул ученический (10 шт.);
- стол ученический (5 шт.);
- стол компьютерный (1 шт.);
- кресло компьютерное (1 шт.).

Информационное обеспечение:

- вспомогательная литература;
- интернет.

Кадровое обеспечение: педагог дополнительного образования Ронинград Станислав Викторович. Педагогический стаж 2 года.

Для полноценной реализации программы необходимо:

- обеспечить обучающихся необходимой учебной и методической литературой;
- создать условия для безопасных учебных полётов в помещении;
- создать условия для разработки проектов;
- обеспечить удобным местом для индивидуальной и групповой работы;
- обеспечить обучающихся аппаратными и программными средствами.

Программные средства:

- Операционная система.
- Наземная станция (программа для настройки полётных контроллеров и получении полётной телеметрии в случае применения радиомодема.

Психолого-педагогические условия реализации программы

Для успешной реализации дополнительной общеразвивающей программы должны быть обеспечены следующие психолого-педагогические условия:

• Уважение взрослых к человеческому достоинству детей, формирование и поддержка их положительной самооценки, уверенности в собственных возможностях и способностях;

- Использование в образовательной деятельности форм и методов работы с детьми, соответствующих их возрастным и индивидуальным особенностям (недопустимость как искусственного ускорения, так и искусственного замедления развития детей);
- Построение образовательной деятельности на основе взаимодействия взрослых с детьми, ориентированного на интересы и возможности каждого ребенка и учитывающего социальную ситуацию его развития;
- Поддержка взрослыми положительного, доброжелательного отношения детей друг к другу и взаимодействия детей друг с другом в разных видах деятельности;
- Поддержка инициативы и самостоятельности детей в специфических для них видах деятельности;
- Возможность выбора детьми материалов, видов активности, участников совместной деятельности и общения;
- Поддержка родителей (законных представителей) в воспитании детей, охране и укреплении их здоровья, вовлечение семей непосредственно образовательную деятельность.

Учебно-методическое обеспечение программы

- 1. Белинская Ю.С. Реализация типовых маневров четырехвинтового вертолета. Моло-дежный научно-технический вестник. МГТУ им. Н.Э.
- 2. Гурьянов А. Е. Моделирование управления квадрокоптером Инженерный вестник. МГТУ им. Н.Э. Баумана. Электрон.журн. 2014 №8.
- 3. Ефимов. Е. Программируем квадрокоптер на Arduino: http://habrahabr.ru/post/227425/
- 4. Институт транспорта и связи. Основы аэродинамики и динамики полета. Рига 2010.
- 5. Канатников А.Н., Крищенко А.П., Ткачев С.Б. Допустимые пространственные траек- тории беспилотного летательного аппарата в вертикальной плоскости. Наука и образование. МГТУ им. Н.Э. Баумана. Электрон.журн. 2012. №3.
- 6. Колесников К.С., Механика в техническом университете. В 8 т. Т. 1. Курс теоретической механики. М.:Изд-во МГТУ им. Н.Э. Баумана, 2005.736 с. Beard R.W. Quadrotor Dynamics and Control. Brigham Young University, October 3, 2008.
- 7. Мартынов А.К. Экспериментальная аэродинамика. М.: Государственное издательство оборонной промышленности, 1950. 479 с. 13. Мирошник И.В. Теория автоматического управления. Линейные системы. СПб: Питер, 2005. 337.
- 8. Редакция Tom's Hardware Guide. FPV- мультикоптеры: обзор технологии и железа. 25 июня 2014.
- 9. Alderete T.S. "Simulator Aero Model Implementation" NASA Ames Research Center, Moffett Field, California. P. 21.
- 10.Bouadi H., Tadjine M. Nonlinear Observer Design and Sliding Mode Control of Four Rotors Helicopter. World Academy of Science, Engineering and Technology, Vol. 25, 2007. Pp. 225-229. 11. Madani T., Benallegue A. Backstepping control for a quadrotor helicopter. IEEE/RSJ International Conference on Intelligent Robots and Systems, 2006. Pp. 3255-3260.
- 11. Dikmen I.C., Arisoy A., Temeltas H. Attitude control of a quadrotor. 4th International Conference on Recent Advances in Space Technologies, 2009. Pp. 722-727. 4. Luukkonen T. Modelling and Control of Quadcopter. School of Science, Espoo, August 22, 2011. P. 26.
- 12.LIPO SAFETY AND MANAGEMENT: http://aerobot.com.au/support/training/lipo-safety
- 13. Murray R.M., Li Z, Sastry S.S. A Mathematical Introduction to Robotic Manipulation. SRC Press, 1994.P. 474.
- 14.Zhao W., Hiong Go T. Quadcopter formation flight control combining MPC and robust feedback linearization. Journal of the Franklin Institute. Vol.351, Issue 3, March 2014. Pp. 1335-1355. DOI: 10.1016/j.jfranklin.2013.10.021.